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Abstract: Two monotone empirical Bayes estimators for the binomial parameters are considered: One using 

the monotonizing method of Van Houwelingen (Sratisfica Neerlandica 31, 1977), and the other using the 

isotonic regression method. The corresponding asymptotic optimality is investigated. It is proved that for each 

of them, the associated rate of convergence is of order a-’ where II is the number of past observations at hand. 

Improved empirical Bayes estimators are obtained by Rao-Blackwellizing the two monotone empirical Bayes 

estimators. The small sample performance of the proposed empirical Bayes estimators as well as some other 

known empiricai Bayes estimators is investigated using Monte Carlo simulation. The performance of the 

proposed empirical Bayes estimators is much better than that of the others, especially when N is small. 
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1. Introduction 

Consider a sequence of M Bernoulli trials. Let p denote the probability of success 
for each trial and Y stand for the number of successes among the total A4 trials. 
Suppose that the parameter p is a realization of a random variable P having a prior 
distribution G. Under the squared error loss, given Y =‘jt, the Bayes estimator of p 
is the posterior mean of P denoted by 

mGM(Y) 
(PG,dY) = E[P 1 y=Yl = f (y) 9 

GM 
U.1) 
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where 

fGdY) = (‘f&Y 1 P) dG(P), 
a0 

11 

%I&) = I PfM(Y 1 P) WPL 
.o 

and 

LdY I P) = 
M ( > p’( 1 _p)M-!* 

Y 

The minimum Bayes risk is given by 

where the expectation E is taken with respect to both Y and P. 

When the prior distribution G is unknown, many authors treated this estimation 
problem via the empirical Bayes approach of Robbins (1956, 1964, 1983). For 
details, the reader is referred to Berry and Christensen (1979), Griffin and Krutch- 
koff (197l), Gupta and Liang (1988), Gutman (1982), Liang (1989), Martz and Lian 
(1974) and Vardeman (1978), among others. As pointed out by Robbins (1956, 
1964), this estimation problem has the interesting feature that estimators which are 
asymptotically optimal in the usual empirical Bayes sense do not exist. This is due 
to the fact that the function cr) GM(y) can not be consistently estimated when the 
prior distribution G is completely unknown. To remedy this deficiency, Robbins 
(1956) suggested observing one more Bernoulli trial at each stage, and proposed an 
estimator which is asymptotically optimal in a modified sense (i.e., asymptotically 
optimal with respect to RM(G) instead of R M+ I(G)). Vardeman (1978) has studied 
two variants of the Robbins’ estimator and has shown that the Bayes risks (under 
squared error loss) of these modified estimators converge to the minimum Bayes risk 
Ri,,,(G) at least with rate of order K”~. Later Liang (1989) improved the 
Vardeman result by providing a lower bound and an upper bound for the rate of 
convergence. These bounds are of order n-’ and .-’ log n, respectively. Gupta and 
Liang (1988) have also investigated two monotone empirical Bayes estimators, 
which are based on Vardeman’s (1978) and Liang’s (1989) original empirical Bayes 
estimators, and proved that for each of them, the corresponding rate of convergence 
is of order n-t. Though this rate is the best rate one can obtain for this estimation 
problem, one is also interested in the small sample performance of the empirical 
Bayes estimators. 

In this paper, we deal with this estimation problem through the nonparametric 
empirical Bayes approach. Two monotone empirical Bayes estimators are con- 
structed: one using the monotonizing method of Van Houwelingen (1977), and the 
other using the isotonic regression method. The corresponding asymptotic optimality 
is investigated. For each of them it is found that the associated rate of convergence 
is of order n-l. Improved empirical Bayes estimators are obtained by using the 
Rao-Blackwellizing method. These improved empirical Bayes estimators are better 
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than the original one in the sense that the improved empirical Bayes estimators have 
smaller Bayes risks. Monte Carlo simulation is used to study the small sample 
performance of the proposed empirical Bayes estimators and rot:le other known 
empirical Bayes estimators. The simulation results indicate that the proposed 
empirical Bayes estimators perform much better than the other known empirical 
Bayes estimators, especially when the number of past observations n, is small. 

2. Monotone empirical Bayes estimators 

In this section, a modified empirical Bares framework of Robbins (1956, 1964) 
is adopted. Following his suggestion, an experimenter observes one more Bernoulli 
trial at each stage. For each i=l,2 ,..., let Xi=(X,, ,..., Xi,M+I) denote M+I 
independent Bernoulli variables with probability of success pi at stage i. The 
parameter pi is a realization of a random variable Pi. It is assumed that the random 
variables P,, Pz, . . . are independently distributed with a common unknown prior 
distribution G. Under this model, X1,X2, . . . , are i.i.d. Suppose that now we are at 
stage n + 1. Thus, we have n past observations X,, . . . ,X, and the present obser- 
vation X, + , . Our goal is to construct empirical Bayes estimator for the current 
random parameter P,, + I. 

Before we go further to construct the empirical Bayes estimators for the estimation 
problem under study, we first look at certain properties associated with this 
estimation problem. 

Note that the class of binomial probability function {f&Y 1 p)] C<p< 1) has 
monotone likelihood ratio in Y and therefore, the Bayes estimator vGM(Y) is an 
increasing function of y. Recall that under the squared error loss, all the monotone 
estimators form an essentially complete class, see Berger (1985). Hence, mono- 
tonicity is a desirable property for an empirical Bayes estimator. In the literature, 
Van Houwelingen (1977) has studied a method to monotonize empirical Bayes 
estimators for the discrete exponential family. A resulting monotonized empirical 
Bayes estimator has been shown to be as good as the original one in terms of Bayes 
risks. However, the performance of the monotonized empirical Bayes estimator is 
strongly dependent on that of the original empirical Bayes estimator. Hence, to 
apply his monotonizing method, it is important to find a ‘good’ initial empirical 
Bayes estimator. 

For each i= l,2,..., FI + 1) let Yi,,,z = Cjy:,)_ /Yij F x = :, . . . , M+ 1. Then, con- 

ditional on Pi =pi, Yi,,,, and Xi,,,, are independlent, and are, respectively, B(M, pi) 

and B( 1, pi). 
For each y=O, l,..., M, let 

(2.1) 
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where la4( - ) denotes the indicator function of the set A. 
Note thai E[&Jy)] =jLM(y) and ~[u~,AY)] = q&y). Since XI, . . ..X., are 

i.i.d., by the strong law of large numbers, _&,,,(_Y) and CO,&J~ are consistent 
estimators of fGM( y) and aGM( Y), respectively, for each Y = 41, . . . , M. TO estimate 
pa,,,,(y) defined in (1. I), it is thus reasonable to use the consistent estimator p,&Y) 
defined by 

PM,I(Y) = 
c%&(Y) 

Jk(Y) ’ 
(2.2) 

where O/0=0. Note that OQpMJy)< 1, y=O, 1, . . . . M. 
However, the function (pMJY) may not possess the monotonicity property. 

Based on the previous reasoning, it is important to consider monotone empirical 
Bayes estimators. Two monotone empirical Bayes estimators are constructed based 
on the initial WIpiriCal Bayes CSthXItOr f))Mtt- One is the monotone empirical Bayes 
estimator which is obtained by monotonizing the empirical Bayes estimator (PIMn by 
the monotonizing method of Van Houwelingen (1977). We denote this monotonized 
version of (DMrI by e&. Since there is no closed form for e$&, the reader is referred 
to Van Houwelingen (1977) for det, ils. We propose using e$JY,l+ r,+,+ r) to 
estimate P,l + I. This monotone empirical Bayes estimator &,,(Y,t, ,,,M+l) has the 
following nice property: 

U(&,AY,,+ 1.M+ I ~-P,t+~~2~~E~~~M,t~Y,+,,M.,~-P,+,~~~~ (2.3) 

For details, see Van Houwelingen (1977). 
The other monotone empirical Bayes estimator is constructed using the isotonic 

regression method. For each y = 0, 1, . . . , A4, define 

@M,,(Y) = 
:.f$ s$:M ~~~~M~t(X)~_~~~~~t(X)]- 

(2.4) 

It is easily seen that @,,&(Y) is nondecreasing in y_ We propose using @&,!(Y) to 
estimate (PoM(Y)r and suggest estimating P,+ , by &,JY,,,. I,M+ J. 

Remark 2.1. (a) Note that E[P,, + ,] = Waco cJIGM(Y)~GM(Y). The expectation of the 
random parameter P,l + 1 is thus a weighted sum of the posterior means (Do-M(Y) with 
weights fGM(y), y = 0, 1, . . . , M. Hence, &,,Jy), y = 0, . . . , M, can be viewed as the 
isotonic regression estimators of pGM(Y), y = 0, 1, . . . , M, based on the naive 
estimators f&,,,,,(Y), Y=O, I,..., M, with random weight functions .&&Y)t y= 
O,l,..., M. 

(b) In the literature, Robbins (19X$, Vardeman (1978) and Liang (1989) have 
proposed some nonparametric empirical Bayes estimators for e?o,&Y)- These 
estimators are consistent in the sense that they converge to e&,(Y) in probability. 
However, none of them possesses the monotonicity property. Gupta and Liang 
(1988) have constructed two monotone empirical Bayes estimators which are based 
on Vardeman’s : nd Liang’s original estimators using the isotonic regression method 
with equal weights. 
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(c) All the empirical Bayes estimators, proposed by those authors just mentioned 
in (b), use only the information contained in (Yi,M+ I,Xi,M+ 1), i= 1, . . ..)I. to 
estimate f&,,(y) and ~_+&y). However, the proposed empirical Bayes estimators 
p&,, and @M* use all the information of (Yi,t)1,Xi,,)1), IPI= l,...,M+ 1, i=l,...,n. 

3. Asymptotic optimality 

For an empirical Bayes estimator vMJY,,+ l,M+ ,) of P,+ 1, let RM(G, ~j/,& denote 
its associated conditional Bayes risk (conditional on the past observations X1, . . . , X,,) 
and ER,(G, v/,,,,,) the associated overall Bayes risk, where the expectation E is 
taken with respect to (X,, . . . , X,,). Since R&G) is the miG;.,in Bayes risk, 

R&G, !uMII) - R,(G) 2 0 for all (XI, l . . 9 X,!) and for all n, therefore ERM(G, t//Ma) - 
RM(G)>O for all n. The nonnegative difference ERM(G, I,YM~) - R&G> is often 
used as a measure of optimality of the empirical Bayes estimator t,uh,,,(Y,+ l,M+ 1). 

Definition 3.1. A sequence of empirical Bayes estimators { v$#n} is said to be 
asymptotically optimal in E of order /I?,, relative to R,(G) if ERM(G, vMn)-RM(G)= 
0( P,,), where { &,) is a sequence of positive numbers such that lim, --, o. /I$= 0. 

The usefulness of empirical Bayes estimators in practical applications clearly 
depends on the convergence rates at which the risks of the successive estimators 
approach the minimum Bayes risk. In the following, we evaluate the performance 
of the two sequences of empirical Bayes estimators {@jMO} and {p&,,) on basis of 
the rates of convergence. 

For the empirical Bayes estimator @M,,( Y,I + l,M+ l ), straightforward computation 
leads to the following: 

= JWMJY) - CDGM(Y))‘~~GM(Y) 
_v=o 

= c JW~,~Y) - hcl(y))21fGM(y)~ (3.1) 

where A={yl fcM(y)>O, y=O,l,..., M}. The case A={O,l,..., M} will be con- 
sidered first, followed by the case where A # (41, . . . , M} . First, as A = { 0,1, . . . , bl} 9 

we let cl =minOGyGM fCM(y). Note that cl > 0. 
* 
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Proof. 

where the second inequality follows from Theorem 2 of Hoeffding (1963). G 

Lemma 3.2. (a) For O<y<x<M and for each tE(O,p&y)), 

P{~~~~(x)-(~,,(Y)~-~, fM,~(x)>0}~exp{-2nr2c:}. 

(b) For O<x<y<M and for euch t~(O,l --q&y)), 

Proof. We prove par” (a) only. By the definition of (pM,&x), foliowing direct 
computation, we obtain 

where the last inequality follows from Theorem 2 of Hoeffding (1963) and the 
definition of cl. III 

Lemma 3.3. (a) For O<yfx<M, 

(b) For O<x<yfM, 

’ 1 - V<,\I(.\‘) 

I 
tP{CPnln(X)-CDGM(Y)>f} dt = O(n-‘h 

s 0 

Proof. (a) Note that for O<y<x<M and for each ~E(O,~C,&.Y)), 

<p{fM,,@) =o} + P{%t,,,(-Y) - ‘%h,(Y)< -t,fM,#)>o}. 
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Then, by Lemmas 3.1 and 3.2 (a), after taking integration over the domain oft, the 
result follows immediately. 

(b) Similarly, by Lemma 3.2 (b) and taking integration, then the result 
follows. cl 

Theorem 3.1. Let (#jMt, ) be the sequence of the empirical Bayes estimators defined 
in (2.4). Then, ER,(G, @jMt,) - R,(G) = O(n-I). 

Proof. First, we consider the case where A = (9 1, . . ..M}. By the definition of 
$,,,,,J y), straightforward computation leads to the following: For each y=O, 1, . . ..M. 

mhdY) - COGM(Y))21 
‘~GVW 

= I ~~P{~M,(Y)-(PcM(Y)<-~) dt 
a0 

’ 1 - cpt; d Y) 
+ I 2tP{~M,,(Y)-40GM(Y)>t) dt 

.O 

Gf ’ 9%; d ?I) 

I ~~P(cP~,~(x)-(PGM(Y)<-~} dt 
s=y , 0 

Then, by the finiteness of M, Lemma 3.3 and (3.1), the result follows directly. 
Next, we consider the case where A + { 0, 1, . . . , M}. Note that by the definition of 

fGM(y), that fcM((y)>O !a2r some ye { 1, . . . . M - 1) will imply that fGM( y) > 0 for all 
y=o, 1, . . . . IV. Also, that fcM( y)=O for some y= { 1, . . . 3 M- 1) implies that fGM( y)=O 
for all YE { l,..., M-l}. Thus, A#{O,l,..., M} ift’ A c (0, M}. This situation 
occurs iff the support of the random variable P, + 1 is contained in { 0, 1 } . Let g 
denote the probability function of such a prior distribution G with support CCA- 
tained in { 0, 1 }. Then, 0 <g(O), g( 1) < 1 and g(0) + g( 1) = 1. Therefore, we can obtain 
that P{X,, =--==Xi.M+I} = 1 for all i= l,...,n+ 1. In particular, g(x)= 1 iff 
P{XjJ=~*.=Xi,M+~ =x} = 1 for each x=0,1. Under such situation, by the definition 
of e,,,,,,(y) and (3.1), a straightforward computation shows that ER,&G, @M,J - 
R,(G) =O. Hence, the theorem holds true. 

When both g(0) and g( 1) are positive, then fGM(0)>O and fGM(M)>O. One cari 
also obtain results like Lemmas 3.1-3.3, but with cl = min(fGIM(0),fGM(M))>O. 
The remaining proof is similar to the case where A = { 0, I, . . . , M). We omit the 
details here. 0 

For the sequence of empirical Bayes estimators {q~fi,,}, we also have the 
following theorem. 

Theorem 3.2. Let iv&,,> be the sequence of empirical Bayes estimators obtained 



from ( cpnI,l ) by using the rnonotoniaing method oj Vun Houwelingen ( 1977). Then, 

ERA,@, (P.&J - R&G) L= Wn -’ )a 

Proof. By Lemmas 3.1-3.3 and following argument analogous to the proof of 
Theorem 3.1, one can prove that, for the sequence of the empirical Bayes estimators 

E&,&Z cp,d - R,?(G) = W - ’ )= (3.2) 

Therefore, the result of the theorem follows immediately from (2.3) and (3.2). 0 

4. Rao-Blackweilization of empirical Bays estimators 

The asymptotic optimality of the empirical Bayes estimators proved in Section 3 
is a modified empirical Bayes optimality, i.e., optimality with respect to R,+,(G) in- 
stead of RAI+ ,(G). As mentioned earlier, for this estimation problem, estimators 
which are asymptotically optimal in the usual empirical Bayes sense do not exist and 
GnftI and q&t1 are not asymptotically optimal with respect to R,, r(G). 

Despite this undesirable fact, we still can improve the performance of the em- 
pirical Bayes estimators by Rao-Blackwellizing the empirical Bayes estimators (ijM,l 
and q&,,. 

In &?e=ral- let ~M~~(~I+I.M+I ) be an empirical Bayes estimator of P, + I. Let 
s ‘) + 1 = Kt+l,.\f+l +XI,+I.M+b the number of successes among the total M+ 1 Ber- 
noulli trials taken at stage n + 1. Let 

where the condition expectation is taken with respect to Y,I+ l,M+ 1 conditional on 
S iI + l. Straightforward computation yields 

~M+I.,&+ I) = 
M+l-S,,+l 

M+l 
~M,I& I) + (4.2) 

where +v,%,,#(M+ l)= 1 and w,&- 1) ~0. 
We have the following result. 

Theorem 4.1. Let ~MII(&+I.M+I ) be an empirical Bayes estimator of P,, + I and let 
wiw+ I,rr(S~l + l ) be defined in (4.1). Then 

mf%t+ ,.,Ls,, + 1 )-P,,+I)“I~E[(~/M,,(Y,~+I,M+I)-P,~+~)~I 

for alI n. 

Proof. For each fixed p, O<p < 1, conditional on (X,, . . . , X,,), by Rao-Blackwell 
theorem, we can obtain 



where Es,, + , is computed with respect to a B(M+ 1,~) distribution 
computed with respect to a B(M,p) distribution. Since (4.3) holds 

Xl , . . . , X,t and n, we have. 

We denote the Rao-Blackwellized version of the empirical Bays% estimators q&, 

and @At,, bY (PIL I.11 and @nr + I,,,, respectively. That is, 

&t I,rr(s~t+ 1) = 
M* 1 -~,~+I 

M+E 
(4.5) 

Since both q& and @,,1,I possess the monotonicit y property, it is e 
q&+ l,,l and &,,,+ l,,1 possess the monotonicity property. 

5. Simulation comparisons 

In this section, we compare the small sample performance of the proposed em- 
pirical Bayes estimators q&, qMn, &+ I,n and GM+ l,n with several known non- 
parametric empirical Bayes estimators via Monte Carlo simulation study. We let 
X i,M+t and Yi,M+t i= 1,2 ,... be defined as that in Section 2. 

For each _y=O, 1, . . . . M, let 

cJMnR(Y) = 
y+ + 

i I{y}(&,M+ I +X&M+ I)- 
(n + l)(M+ 1) i= t 

Robbins (1956) suggested estimating the binomial parameter P,+ l by vM,R( Y,+ t,M+ I), 
where 

PM~IRK+ I,M+ I) = 
uMnR(Yn+l,M+ I) 

fMnRtYn+ l,M+ 1) l 

W) 

Note that P{qp M,&& I_ I,M_! I )> l} >O. However, it is known that O@&Y,+ f,M+ 1) < 
1. Thus, Vardeman (1978) considered a variant of (5.1) and suggested estimating 
P t~+i bY (P~~~KI+I,M+I) where 
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9%ltdY,,+ l,hl+ 1) = m~h%f,rRw1+l.M+ lh l>* (5.2) 

One can see that (PA~,&“~+ I,M+ I) is superior to qMnR( Y,* + l,bill+l ) in the sense that 
&(G, ~.,,rll.) < R,$,(G, q~,t~) for any prior distribution G and any past observations 

Xl 9 l ** 9 xtt* 

Liang (1%9) proposed using q,,,,,J Ytl + l, M + l ) to estimate Ptl + I 3 where 

with 

(Pld YII + 1, Iv + 1) = 
%l,,L(L l,M+ 1) 

fM,d&+ I,M+ 1) ’ 

(5.3) 

y = O,l)..., A!?. 

Gupta and Liang (1988) proposed a monotone empirical Bayes estimator, say 
~.,,,&Y,, + I. .I!& ]) using the isotonic regression method with equal weights. The 
estimator CC).~~,~~~ is constructed as follows. Let, for each y = 0, 1, . . . , Ad, 

1 I1 1 
W,,(Y) = - C Xi,hl+ ll{_v)(V,M+ 1) + ;, n ;=I 

and 
q,(Y) 

(P,,(Y) = - 
f,,(Y) l 

Then, qiI,& y), y = 0, 1, . . . , M, is defined as follows: 

q,h,,,~~( _Y) = max min 
O<s<y s<r<M 

f: %,(YVU-s+ 1) 
_V=s 

(5 4 

Since (PM,IV and (PMttL are not monotone, the monotonizing method of Van 
Houwelingen (1977) is applied to them and the resulting monotone empirical Bayes 
estimator s are denoted by ~&,~r~ and v&,,~, respectively. Finally, we let q$+ l,nl’, 
&,+ l,,IL and (P,~+ ~,,IGL denote the Rao-Blackwellized version of the empirical Bayes 

estimators v$,, v v f~&. and (PM,,GL, respectively. 
In the following, we compare the perfoirnance among the empirical Bayes 

estimators cp* M,I 9 @Mtt 3 (PM,, 1’ 3 dit, V 3 (PMttL 3 dit,L 9 qM,tGL and the associated Rao- 
Blackwe!lized versions. We let the prior distributioxr G be a member in the family 
of beta distributions with parameters (QJ). The simulation scheme used in this 
paper is described as follows: 

(1) At stage i, i= 1,2, . . . , genera+ IuLe random value pi according to the prior distri- 
bution G. Then, generate M+ 1 Bernoulli random variables Xi, l, . . . ,Xi,M+ l from a 
B(1, pi) distribution. 

(3-j For each n, based 03 I1 the data (Xl,j, Yi,,,j= 1, . . . . M+ l,i-= 1, . . . . n + I}, con- 



;IChen Liang, Wen-Tao Huang / On monotone empirical Bayes estimators 343 

struct the em A; f Bayes estimators q&,, , @MI, 3 (PM,,V 3 &b’ 9 %l:?L 3 dl,iL and 

(PMllGL. Then, ctimpute the corresponding conditional Bayes risk R,,,,(G, v/~,,,) where 
wM/ln denote the related empirical Bayes estimator. 

(3) For each of the empirical Bayes estimators, derive the corresponding Rao- 
Blackwellized version and compute the associated conditional Bayes risk 

RM+ dG, wM+ 1,~) where vM+ I,n is the Rao-Blackwellized version of vM,,. 
(4) The process is repeated 500 times. For each n, the average, denoted by 

g&,(G, v/MI,) (or ER M+ l (G, V/M+ 1,,1) for the Rao-Blackwellized empirical Bayes 
estimator vM+ !,,, ) based on the 500 conditional Bayes risks, is used as an estimator 
of the corresponding overall expected Bayes risk ERM(G, IJIM,,) (ERM+ l (G, I//M + &). 

The simulation study has been carried out for several values of the parameters 
(cc, p) and M. Since the simulation comparison indicates similar result, we only 
report the results of the cases where (cc, /?)= (0.5,0.5), (5,s) and M= 15. In the 
tables, the numbers in the parentheses are the estimated standard errors of the cor- 
responding estimators l?R,(G, v/M~,)(E’RM+ 1 (G, I,UM+ ,,,,)). 

The simulation results indicate that the performance of the empirical Bayes 
estimators GM,, and q&,, is much better than that of (P~~,,~, (P~,,,~, PM&., q&,lL and 
qMIIGL, especially when the number of the past observations n is very small. Similar 
results also hold for the Rao-Blackwellized version eM+ l,n and q$+ I,n compared 
with the others. The effect may be due to the use of all the information (Xi,j, Yi,j), 
j= 1, . . . . M+ 1, i= 1, . . . . n. If we compare the performance of the empirical Bayes 
estimator vM,~V(~M~L) with the corresponding monotonized version q&,&$,& we 
can see that the small-sample performance of (p &,&(P&~) is much better than that 
of vM~L(~M,~V). This fact may also indicate the importance of the monotonicity 
property for empirical Bayes estimators for the estimation problem under study. 
Finally, we compare the performance of @Mn(@M+l,,I) and &,,(P~+ &- From 
Tables 1 and 2, it can be seen that the performance of &,&&+ ,,,1) is always better 
than that of @Mn(@M+l,n ). This may indicate the superiority of the Van Houwe- 
lingen’s monotonizing method to the isotonic monotonizing method. 
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