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Abstract: Two monotone empirical Bayes estimators for the binomial parameters are considered: One using
the monotonizing method of Van Houwelingen (Statistica Neerlandica 31, 1977), and the other using the
isotonic regression method. The corresponding asymptotic optimality is investigated. It is proved that for each
of them, the associated rate of convergence is of order n”' where n is the number of past cbservations at hand.
Improved empirical Bayes estimators are obtained by Rao-Biackwellizing the two monotone empirical Bayes
estimators. The small sample performance of the proposed cmpirical Bayes estimators as well as some other
known empirical Bayes estimators is investigated using Monte Carlo simulation. The performance of the
proposed empirical Bayes estimators is much better than that of the others, especially when #n is small.
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1. Introduction

Consider a sequence of M Bernoulli trials. Let p denote the probability of success
for each trial and Y stand for the number of successes among the total M trials.
Suppose that the parameter p is a realization of a random variable P having a prior
distribution G. Under the squared error loss, given Y =7y, ihe Bayes estimmator of p
is the posterior mean of P denoted by

wem(Y) (L.1)

—E[P|Y=y] = 2%
Pam(¥) = EIP[Y=)] Jom()
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where

LB |
Som(¥) = \ fuly| pYdG(p),
J0

g
weu(y) = \ pfu(y | P)AG(p),
JO

and

M v M-v
fM(ylp)=(y )p~(1—p) g

The minimum Bayes risk is given by

Ru(G)=R (G, 0c1) = EUpcm(Y) - P)?, (1.2)

where the expectation E is taken with respect to both Y and P.

When the prior distribution G is unknown, many authors treated this estimation
problem via the empirical Bayes approach of Robbins (1956, 1964, 1983). For
details, the reader is referred to Berry and Christensen (1979), Griffin and Krutch-
koff (1971), Gupta and Liang (1988), Gutman (1982), Liang (1989), Martz and Lian
(1974) and Vardeman (1978), among others. As pointed out by Robbins (1956,
1964), this estimation problem has the interesting feature that estimators which are
asymptotically optimal in the usual empirical Bayes sense do not exist. This is due
to the fact that the function wgp(») can not be consistently estimated when the
prior distribution G is completely unknown. To remedy this deficiency, Robbins
(1956) suggested observing one more Bernoulli trial at each stage, and proposed an
estimator which is asymptotically optimal in a modified sense (i.e., asymptotically
optimal with respect to R,,(G) instead of Ry, (G)). Vardeman (1978) has studied
two variants of the Robbins’ estimator and has shown that the Bayes risks (under
squared error loss) of these modified estimators converge to the minimum Bayes risk
Ry/(G) at least with rate of order n~'/2. Later Liang (1989) improved the
Vardeman result by providing a lower bound and an upper bound for the rate of
convergence. These bounds are of order n~! and n~! log n, respectively. Gupta and
Liang (1988) have also investigated two monotone empirical Bayes estimators,
which are based on Vardeman’s (1978) and Liang’s (1989) original empirical Bayes
estimators, and proved that for each of them, the corresponding rate of convergence
is of order n~'. Though this rate is the best rate one can obtain for this estimation
problem, one is also interested in the small sample performance of the empirical
Bayes estimators.

In this paper, we deal with this estimation prohlem through the nonparametric
empirical Bayes approach. Two monotonc empirical Bayes estimators are con-
structed: one using the monotonizing method of Van Houwelingen (1977), and the
other using the isotonic regression method. The corresponding asymptotic optimality
is investigated. For each of them it is found that the associated rate of convergence
is of order n~'. Improved empirical Bayes estimators are obtained by using the
Rao-Blackwellizing method. These improved empirical Bayes estimators are better
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than the original one in the sense that the improved empirical Bayes estimators have
smaller Bayes risks. Monte Carlo simulation is used to study the small sample
performance of the proposed empirical Bayes estimators and <orae other known
empirical Bayes estimators. The simulation results indicate that the proposed
empirical Bayes estimators perform much better than the other kxnown empirical
Bayes estimators, especially when the number of past observations n, is small.

2. Monotone empirical Bayes estimators

In this section, a modified empirical Bayes framework of Robbins (1956, 1964)
is adopted. Following his suggestion, an experimenter observes one more Bernoulli
trial at each stage. For each i=1,2,..., let X;=(X;,..., X ;) denote M+1
independent Bernoulli variables with probability of success p; at stage i. The
parameter p; is a realization of a random variable P;. It is assumed that the random
variables P,, P,,... are independently distributed with a common unknown prior
distribution G. Under this model, X, X5, ..., are i.i.d. Suppose that now we are at
stage n+ 1. Thus, we have n past observations X|,...,X, and the present obser-
vation X, .. Our goal is to construct empirical Bayes estimator for the current
random parameter P, .

Before we go further to construct the empirical Bayes estimatois for the estimation
problem under study, we first look at certain properties associated with this
estimation problem.

Note that the class of binomial probability function {f,(» | p)| C<p<1} has
monotone likelihood ratio in y and therefore, the Bayes estimator ¢gp(y) is an
increasing function of y. Recall that under the squared error loss, all the monotone
estimators form an essentially complete class, see Berger (1985). Hence, mono-
tonicity is a desirable property for an empirical Bayes estimator. In the literature,
Van Houwelingen (1977) has studied a method to monotonize empirical Bayes
estimators for the discrete exponential family. A resulting monotonized empirical
Bayes estimator has been shown to be as good as the original one in terms of Bayes
risks. However, the performance of the monotonized empirical Bayes estimator is
strongly dependent on that of the original empirical Bayes estimator. Hence, to
apply his monotonizing method, it is important to find a ‘good’ initial empirical
Bayes estimator.

For each i=12,...,n+1, let Y, , = Ej”iﬁ"j*m Xy, m=1,...,M+1. Then, con-
ditional on P;=p,, Y;,, and X, ,, are independent, and are, respectively, B(M, p;)
and B(1, p;).

For each y=0,1,...,M, let

1 n M+l
— Y, ) 2.1
an(y) n(M+ 1) '_;l j;} ]{}’}( 'u’) ( )
1 n M+l
(M) =———— ¥ ,Zl X, il (Y )

nM+1) =y j=
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where 7,4(-) denotes the indicator function of the set A.

Note thai Elfyn(M] =Jom(») and Elwp, ()] =wep(Y). Since X, ..., X, are
i.i.d., by the strong law of large numbers, fy,,(») and wy,(y) are consistent
estimators of fgu () and wgu( ), respectively, for each y=0,1,.... M. To estimate
@m( ) defined in (1.1), it is thus reasonable to use the consistent estimator @y, ()
defined by

an(y)

TP’

where 0/0=0. Note that 0< ¢y, (ML], y=0,1,....M.

However, the function @,,,(y) may not possess the monotonicity property.
Based on the previous reasoning, it is important to consider monotone empirical
Bayes estimators. Two monotone empirical Bayes estimators are constructed based
on the initial empirical Bayes estimator ¢,,,. One is the monotone empirical Bayes
estimator which is obtained by monotonizing the empirical Bayes estimator ¢,,, by
the monotonizing method of Van Houwelingen (1977). We denote this monotonized
version of @, by @y, Since there is no closed form for ¢yy,, the reader is referred
to Van Houwelingen (1977) for det.ils. We propose using @3y, (Y, 1 a+1) 1O
estimate P,,;. This monotone cmpirical Bayes estimator @3z, (Y, »+1) has the
following nice property:

E[(@tln(nz-r l.M+l)'Pn+ 1)2] QE[((PM,,(Y,H. l.M+l)_‘Pn+ I)Z]' ‘(2'3)

For details, see Van Houwelingen (1977).

The other monotone empirical Bayes estimator is constructed using the isotonic
regression method. For each y=0, 1,..., M, define

Oma(Y) = 2.2)

{ ;o '

@rmn(y) = max min { Wpta(X) / ) an(x)I- (2.4)
0<s<y s<tsM (x=s xX=5

It is easily seen that @,,,(y) is nondecreasing in y. We propose using @, () to

estimate @gp(y), and suggest estimating P, by @r, (Y, 11 0141)-

Remark 2.1. (a) Note that E[P,,,]= L_, oca(»)fem(¥). The expectation of the
random parameter P, , ; is thus a weighted sum of the posterior means oGm(y) with
weights fy(y), y=0,1,..., M. Heuce, @p,(»), y=0,...,M, can be viewed as the
isotonic regression estimators of @g(y), ¥=0,1,...,M, based on the naive
estimators @,,(»), y=0,1,...,M, with random weight functions fy,(»), y=
0,1,..,M.

(b) In the literature, Robbins (1956), Vardeman (1978) and Liang (1989) have
proposed some nonparametric empirical Bayes estimators for @gp(y). These
estimators are consistent in the sense that they converge to ¢g,(y) in probability.
However, none of them possesses the monotonicity property. Gupta and Liang
(1988) have constructed two monotone empirical Bayes estimators which are based

on Vardeman’s - nd Liang’s original estimators using the isotonic regression methc
with equal weights.
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(c) All the empirical Bayes estimators, proposed by those authors just mentioned
in (b), use only the information contained in (Y, p, 1, Xjp41) i=1,...,n, to
estimate fgp(») and wgy(y). However, the proposed empirical Bayes estimators
¢rn and @y, use all the information of (Y} ,,, X; ), m=1,...,M+1, i=1,...,n.

3. Asymptotic optimality

For an empirical Bayes estimator y;,(Y, .1 pm+1) of P, 1, let Ry (G, wy,,) denote
its associated conditional Bayes risk (conditional on the past observations Xj, ..., X},
and ER,(G, y,,,) the associated overall Bayes risk, where the expectation E is
taken with respect to (X),...,X,). Since Ry(G) is the mirii..n Bayes risk,
RuM(G, wag) — Ry (G) 20 for all (X, ..., X,) and for all n, therefore ER (G, wpy,) —
Ry(G)>=0 for all n. The nonnegative difference ERy(G, wp,)— Rpy(G? is often
used as a measure of optimality of the empirical Bayes estimator w,;, (Y, ar4+1)-

Definition 3.1. A sequence of empirical Bayes estimators {y,,,} is said to be
asymptotically optimal in E of order B, relative to Ry(G) if ERp (G, wps,)—Rp(G)=
O(B,), where {B,} is a sequence of positive numbers such that lim, _, , 8,=0.

The usefulness of empirical Bayes estimators in practical applications clearly
depends on the convergence rates at which the risks of the successive estimators
approach the minimum Bayes risk. In the following, we evaluate the performance
of the two sequences of empirical Bayes estimators {@,s,} and {@3,} on basis of
the rates of convergence.

For the empirical Bayes estimator @y, (Y, 1), straightforward computation
leads to the following:

0<ER (G, §prm) — Ru(G)

=E[(¢’Mn(Yn+ LM+ l)— (pGM(YrH I,M+ I))Zl

M
= ZOE[(«ﬁM,,(y)—qooM(y»Z]faM(y)
=

= ZA El@rn( D) = 06N W om( D), 3.1)
ye

where A={y| fou(»)>0, y=0,1,...,M}. The case A=1{0,1,...,M} will be con-
sidered first, followed by the case where A #{0,1,...,M}. First,as A={0,1,...,M},
we let ¢, =miny,,, fom(y). Note that ¢,>0.

Lemma 3.1. P{f,,,(x)=0} <exp{-2nci} for all x=0,1,...,M.
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Proof.

P{ frain(x) = 0} = P{ f11u(X) = foar(x) = —for(x)}
< P{ fagn(X) = fou() < =1}
<exp{-2nci},

where the second inequality follows from Theorem 2 of Hoeffding (1963). [

Lemma 3.2. (a) For 0Sy<x<M and for each t€ (0, psr())),

P{0r1a(x¥) = 06m( ) < =1, fog(¥)>0} <exp{-2ntci}.
(b) For 0<x<y<M and for each t€(0,1—@gpr(»)),

P{om(xX) — 9ol ¥) >t} <exp{-2nr’ci}.

Proof. We prove par’ (a) only. By the definition of ¢,4,(x), foliowing direct
computation, we obtain

P{ora(X) — 06rn(¥)> =1, frg,(x)>0}
< P{an(x) —f;VIn(x)[(pGM(y) - t] <O}

< P{whln(x) _an(x)[(pGM(y)_t] - (UGM(X)

+ o) [@ca(Y) — 11 < —tfgp(x)}

n M+l
= P{; _ZI _Zl [Xij = 9ep (D) + 1 (Y )/ (M + 1)< —’fGM(x)‘i
i=1 j=

< exp{-2ntici},

where the last inequality follows from Theorem 2 of Hoeffding (1963) and the
definition of ¢;. [l

Lemma 3.3. (a) For 0<y<xsM,

\‘ ol y)

tP{0p1n (%) — 0ou( )< —1} dt = O(n "),
Jo

(b) For 0<x<y<M,

- oguly)

tP{@p1,(x) = oo (¥) >t} dt = O(n 7).

<0

Proof. (a) Note that for 0<y<x<M and for each 1€ (0, pgu(»)),
P{orn(xX) = on(») < —t}

gp{j}w,,(X)=0}+P{(PM,,(X)—(ﬂGM(y)<—t,_f;w,,(X)>0}.
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Then, by Lemmas 3.1 and 3.2 (a), after taking integration over the domain of ¢, the
result follows immediately.

(b) Similarly, by Lemma 3.2 (b) and taking integration, then the result
follows. [

Theorem 3.1. Let {@,,,} be the sequence of the empirical Bayes estimators defined
in (2.4). Then, ER (G, Gr;,) — Ry(G)=0(n™").

Proof. First, we consider the case where A={0,1,...,M}. By the definition of
P ), straightforward computation leads to the following: For each y=0,1,..., M,

El(@ra(») = 06m(M)]

*Pcu(y) .
= \ 2tP{oun( ) — 0em(») < -1} di
Jo
-0l y) .
+| 2UP{Grn( 9~ Per(»)> 1} di
Jo
M roau(y)
<X \ 2P{Pr1(X) — Per( 1) < ~1} di
x=» Jo
Yo'l -eeuly -
+ Zo \ 2tP{@p(x) — @p(¥)>1} dt.
x=0Jg

Then, by the finiteness of M, Lemma 3.3 and (3.1), the result follows directly.

Next, we consider the case where A # {0, 1, ..., M}. Note that by the definition of
Som(¥), that fu(»)>0 tor some ye {l,...,M—1} will imply that f5,,(»)>0 for all
y=0,1,...,M. Also, that f;,(y)=0 for some y={1,..., M—1} implies that f5,(»)=0
for all ye{l,...,M—1}. Thus, A#{0,1,...,M} ift AC{0,M}. This situation
occurs iff the support of the random variable P, ,, is contained in {0,1}. Let g
denote the probability function of such a prior distribution G with support ccii-
tained in {0, 1}. Then, 0<g(0), g(1)<1 and g(0) + g(1) = 1. Therefore, we can obtain
that P{X;, ==X,y }=1 for all i=1,...,n+1. In particular, g(x)=1 iff
P{X; ==X, p11=x}=1 for each x=0, 1. Under such situation, by the definition
of @p,(») and (3.1), a straightforward computation shows that ERy(G, @p,) —
R(G)=0. Hence, the theorem holds true.

When both g(0) and g(1) are positive, then f;,,(0)>0 and f5,(M)>0. One can
also obtain results like Lemmas 3.1-3.3, but with ¢, =min(f5(0), f6p(M))>0.
The remaining proof is similar to the case where A={0,1,...,M}. We omit the
details here. L[]

For the sequence of empirical Bayes estimators {¢j;,}, we also havc the
following theorem.

Theorem 3.2. Let {¢};,} be the sequence of empirical Bayes estimators obtained
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Srom {@y,} by using the monotonizing method of Van Houwelingen (1977). Then,
ERM(G’ (I’:In) - RM(G) = O(” - ).

Proof. By Lemmas 3.1-3.3 and following argument analogous to the proof of
Theorem 3.1, one can prove that, for the sequence of the empirical Bayes estimators

{orn}s
ERM(G9 (DMn) - RM(G) = 0(” -l)- (3.2)

Therefore, the result of the theorem follows immediately from (2.3) and (3.2). U

4. Rao-Blackwellization of empirical Baves estimators

The asymptotic optimality of the empirical Bayes estimators proved in Section 3
is a modified empirical Bayes optimality, i.e., optimality with respect to R,,(G) in-
stead of Ry, (G). As mentioned earlier, for this estimation problem, estimators
which are asymptotically optimal in the usual empirical Bayes sense do not exist and
@am and @y, are not asymptotically optimal with respect to Ry, (G).

Despite this undesirable fact, we still can improve the performance of the em-
pirical Bayes estimators by Rao-Blackwellizing the empirical Bayes estimators ¢,
and (01’5:::'

In general. let 4,,(Y,, 1 a+1) be an empirical Bayes estimator of P,,,. Let
Soi1=Yoina41 + Xy 41 the number of successes among the total M+ 1 Ber-
noulli trials taken at stage n+ 1. Let

Wt 1.0 e1) = EWan (Y v 10040 | Susi)s 4.1)

where the condition expectation is taken with respect to Y, 5, conditional on
S, +1- Straightforward computation yields
n+1

M+1-5,,, S
—m_ '//Mn(SrH l) + m_l ‘//Mn(Sn+l - l)- (42)

where yy,,(M+1)=1 and w,,,(-1)=0.
We have the following result.

Yrms1n(Sne1) =

Theorem 4.1. Let (Y, .y ) be an empirical Bayes estimator of P, , , and let
War+1,u(Su+1) be defined in (4.1). Then

E[(WM+ l,II(SII+])— Pn+l)2] SE[(!//M,,(Y,H. LM+ I)- Pn+ I)Z]
Jor all n.

Proof. For each fixed p, 0<p<1, conditional on (X, ..., X,), by Rao-Blackwell
theorem, we can obtain
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ES,,. .[(WM+ i.n(Sn+ |)‘P)2 | X|, -..,X"]
gEYm 1A |[(W.’tln(.r-"r + LM+ |)—P)2 | X], ...,X"], (43)

where Eg | is computed with respect to a B(M + 1, p) distribution while Ey, is

ae b Aot

computed with respect to a B(M, p) distribution. Since (4.3) holds for all pe (0, 1),
Xy, ..., X, and n, we have.

ERy (G, L) = El(wyg, I.I!(SH+ )= Py, 1)2]
< E[(WMN(Yn + LA+ l)_ Pn + I)Zl
= ER\ (G, wyy,) = (4.4)

We denote the Rao-Blackwellized version of the empirical Bayes estimators ¢},
and @pg, bY 087, 1., and @y, ,, respectively. That is,

M+I—Sn+l

(oll*/l+ I.n(Sn+ I) = T ‘/’:In( "+ l)+ .}W" - ) W\In(sn I ”s (45)
N M+1-8,,, . S,.1 .
Pr+ I.n(Sn+ I) = T]Hl Mn(sn + l)+ A; ;l ‘p&fn(sn P 1).

Since both @3y, and @,,, possess the monotoaicity property, it is easy to see both
@1+ 1.0 and @y, 1, possess the monotonicity property.

5. Simulation comparisons

In this section, we compare the small sample performance of the proposed em-
pirical Bayes estimators @y, @am, @i+ 1.n and @y, , with several known non-
parametric cmpirical Bayes estimators via Monte Carlo simulation study. We let
Xims1and Y5 i=1,2,... be defined as that in Section 2.

For each y=0,1,..., M, let

1 1
SNLEN ) NG N P
Jamnr(Y) - ii\:l nYirme1) il

y+
omr(Y) = m; I (Yipo1 + X))

Robbins (1956) suggested estimating the binomial parameter P, . ; by @pp,2(Y,11.0+1)s
where

Opnr(Yn s 1,m+1) 5.1)

ormnr(Y, ) = )
MaRE e LM etk (Y s 1a141)

Note that P{@psx\Y,: 107 1)>1}>0. However, it is known that 0<@ep(Yy 1 1,m41) <
1. Thus, Vardeman (1978) considered a variant of (5.1) and suggested estimating
Pn+l by (/’MnV(Yn+1.M+1) where
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Orny Y st 1) = Min{@usur (Yo 101415 1} (5.2)

One can see that @pg,1- (Y, . 1 ar+1) is superior to @a,p(Y, 1,474 1) in the sense that
R/(G, 0r1mr) < Ry(G, @p0r) fOr any prior distribution G and any past observations
Xis oo Xy .

Liang (1939) proposed using @5,,1 (Y, 1.7+ 1) to estimate P, ,, where

Opat (Yo 1,M+41) (5.3)

(aMnl_(yn-» l,M+I) = ’
anR(Yn+ .M+ I)

with

n
O Yy =—— L Ximalg Yy )+ ——X
JYoIAR nt ’_; Mt iU v nt LM+l

y=0,1,....M.

Gupta and Liang (1988) proposed a monotone empirical Bayes estimator, say
@rvin;t(Yu o 1.a7+1) using the isotonic regression method with equal weights. The
estimator ¢,,,; is constructed as follows. Let, for each y=0,1,..., M,

| 1
(V) =— I (Y, + -,
Sy . i; 1 (Yiars) "

1 =z 1
w,(y) = ; .Zl Xime+ |1{y}(Yi,M+1)+;,
1=

and
w,(y)
fi»

Then, @y (¥), ¥=0,1,...,M, is defined as follows:

Pu(Y) =

1]
Prncr(Y) = max  min { ) w,,(y)/(t—sﬂ)}. (5.4)
O0<sSy s<IsM (( y=5

Since ¢y, and @,,,; are not monotone, the monotonizing method of Van
Houwelingen (1977) is applied to them and the resulting monotone empirical Bayes
estimatois are denoted by ¢y, and ¢}, , respectively. Finally, we let @3, .1»
@31+ 1.0 a0d @y, ) .6z denote the Rao-Blackwellized version of the empirical Bayes
estimators @3y,1» Oiz and @p,6r, respectively.

In the following, we compare the performance among the empirical Bayes
estimators (0;5’", (ﬁMn’ Prmnv > (pxtan’ OmnL > (Pfxmu PmnGL and the associated Rao-
Blackwellized versions. We let the prior distribution G be a member in the family
of beta distributions wiith parameters (a, #). The simulation scheme used in this
paper is described as follows:

(1) At stage i,i=1,2,..., generate random value p; according to the prior distri-
bution G. Then, generate M + 1 Bernoulli random variables X, il Ximq froma
B(1, p;) distribution.

(2) For each n, based on ihe data X pYipi=lL. . ,M+1i=1,...,n+1}, con-
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t tha an
Lt U

né Chni .l « Day timator

aiors "I”‘;\kma '7§M1n Py s "I"‘Rc/lnl/’ Onors "ﬁ;\k/lnL and
®amcr- Then, compute the corresponding conditional Bayes risk Ry (G, w,,,) where
¥ un denote the related empirical Bayes estimator.

(3) For each of the empirical Bayes estimators, derive the corresponding Rao-
Blackwellized version and compute the associated conditional Bayes risk
Ry 1(G, wag41,n) Where wy, ., , is the Rao-Blackwellized version of wy,,.

(4) The process is repeated 500 times. For each n, the average, denoted by
ER (G, wpm) (or ERy . 1(G, Wp+1.0) for the Rao-Blackwellized empirical Bayes
estimator ¥y, 1 ,) based on the 500 conditional Bayes risks, is used as an estimator
of the corresponding overall expected Bayes risk ER/(G, wps,) (ERpp . (G, Wps41,0))-

The simulation study has been carried out for several values of the parameters
(o, B) and M. Since the simulation comparison indicates similar result, we only
report the results of the cases where (¢, £)=(0.5,0.5), (5,5) and M=15. In the
tables, the numbers in the parentheses are the estimated standard errors of the cor-
responding estimators ER (G, W ERp , 1(G, Wary 1))

The simulation results indicate that the performance of the empirical Bayes
estimators @,,, and @y, is much better than that of ¢y, s @iy > Catmr> i and
®mncL» €specially when the number of the past observations # is very small. Similar
results also hold for the Rao-Blackwellized version @, , , and ¢y, , compared
with the others. The effect may be due to the use of all the information (X ;, Y, ;),
j=1...,M+1, i=1,...,n. If we compare the performance of the empirical Bayes
estimator ¢, (@a, ) With the corresponding monotonized version ¢y, (@3, ), We
can see that the small-sample performance of @3y, (¢x,;) is much better than that
of @p1(@amy)- This fact may also indicate the importance of the monotonicity
property for empirical Bayes estimators for the estimation problem under study.
Finally, we compare the performance of @y, (@n41.,) and @3,(@3r,1,,). From
Tables 1 and 2, it can be seen that the performance of @3y, (937, 1.») is always better
than that of @y, (@y+1,,). This may indicate the superiority of the Van Houwe-
lingen’s monotonizing method to the isotonic monotenizing method.
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